SeqSpace.jl
  • Home
  • Science
    • scRNAseq normalization
    • scRNAseq spatial inference
    • Manifold learning
  • Library
    • Distances
    • Point Cloud Generation
      • Types
      • Functions
    • Supervised Spatial Inference
    • Data Input/Output
    • Point Cloud Differential Geometry
    • Autoencoder Manifold Learning
    • scRNAseq Normalization
    • Point Cloud
    • Priority Queue
    • Differentiable Rank
    • scRNAseq Data
    • Utilities
    • Voronoi
  • Command Line
    • Drosophila pipeline
Version
  • Library
  • Point Cloud Generation
  • Point Cloud Generation
Edit on GitHub

Point Cloud Generation

Types

Functions

SeqSpace.Generate.sphere — Method
sphere(N; R=1)

Generate a spherical point cloud of N points with extent of radius R.

SeqSpace.Generate.swissroll — Method
swissroll(N; z₀=10, R=1/20)

Generate a point cloud of N distributed on a swiss roll manifold with unit radius and length $rac{z₀}{R}$.

SeqSpace.Generate.torus — Method
torus(N; R=2, r=1)

Generate a point cloud of N distributed on a torus, sized inner r and outer radius R respectively.

« DistancesSupervised Spatial Inference »

Powered by Documenter.jl and the Julia Programming Language.

Settings


This document was generated with Documenter.jl version 0.27.12 on Tuesday 1 March 2022. Using Julia version 1.7.1.